Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtre
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.07.21.23292994

Résumé

Human infection challenge permits characterisation of the associated immune response in unparalleled depth, enabling evaluation of early pre-symptomatic immune changes and the dynamic immune factors important for viral clearance. Here, 34 healthy young adult volunteers, seronegative to SARS-CoV-2, were inoculated with a D614G-containing pre-Alpha SARS-CoV-2 strain. Nasal and systemic soluble mediator and antibody responses, and peripheral blood T cell and B cell responses were measured by MesoScale Discovery and flow cytometry just before and up to 1 year after intra-nasal inoculation. In the 18 (53%) participants who became infected, both nasal and systemic mediator responses were dominated by interferons (IFN) but with divergent kinetics. T cell activation and proliferation in blood peaked at day 10 in CD4+ T cells and day 14 in CD8+ T cells, returning to baseline by day 28. Following infection, antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. T cells contracted after viral clearance with expanded antigen-specific memory T cell populations persisting past day 28. Both mucosal and systemic antibodies became detectable around day 10 but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Using piecewise linear regression modelling, viral load related closely to the induction of type I IFN responses, moreover, CD8+ T cell responses and early IgA responses were strongly associated with viral clearance. Detailed analysis of innate and adaptive immune responses to primary SARS-CoV-2 infection following human challenge thus revealed the relationship between immune kinetics and viral load as factors associated with resolution of infection.


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.02.19.23286159

Résumé

SARS-CoV-2 breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months post-infection. Both BA.1 and BA.2 infection robustly boosted neutralisation activity against the infecting strain while expanding breadth against other Omicron strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modelling of neutralisation titres predicts that protection from symptomatic reinfection against antigenically similar strains will be remarkably durable, but is undermined by novel emerging strains with further neutralisation escape.


Sujets)
Douleur paroxystique
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.11.22.22282199

Résumé

Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies in preventing symptomatic SARS-CoV-2 infection. We use data on changes in the in vivo concentration of monoclonal antibodies, and the associated protection from COVID-19, over time to model the dose-response relationship of monoclonal antibodies for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a monoclonal antibody concentration of 939-fold of the in vitro IC50 (95% CI: 135 - 2073). This relationship provides a quantitative tool allowing prediction of the prophylactic efficacy and duration of protection for new monoclonal antibodies administered at different doses and against different SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either monoclonal antibody treatment or vaccination. We find no evidence for a difference between the 50% protective titer for monoclonal antibodies and vaccination, although vaccination is predicted to be capable of achieving a higher maximum level of protection.


Sujets)
COVID-19
4.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.02.20.481163

Résumé

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ~9-10 months after the primary 2-dose mRNA vaccine series, as well as for ~3 months after a 3rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ~40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3rd dose. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.


Sujets)
Maladies du système immunitaire
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268285

Résumé

Vaccination against SARS-CoV-2 results in protection from acquisition of infection as well as improved clinical outcomes even if infection occurs, likely reflecting a combination of residual vaccine-elicited immunity and the recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and T cell immunity after vaccination of seropositive individuals, and after breakthrough infection in vaccinated individuals. Intensive and early longitudinal sampling reveals the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titres. In breakthrough infections, the delayed kinetics of humoral immune recall provides a mechanism for the lack of early control of viral replication but likely underpins accelerated viral clearance and the protective effects of vaccination against severe COVID-19.


Sujets)
Troubles de la mémoire , Douleur paroxystique , COVID-19
6.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.23.457229

Résumé

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naive and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=146 HEIGHT=200 SRC="FIGDIR/small/457229v1_ufig1.gif" ALT="Figure 1"> View larger version (32K): org.highwire.dtl.DTLVardef@16c64b1org.highwire.dtl.DTLVardef@146ca3aorg.highwire.dtl.DTLVardef@86b7edorg.highwire.dtl.DTLVardef@956879_HPS_FORMAT_FIGEXP M_FIG C_FIG


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21252641

Résumé

Both previous infection and vaccination have been shown to provide potent protection from COVID-19. However, there are concerns that waning immunity and viral variation may lead to a loss of protection over time. Predictive models of immune protection are urgently needed to identify immune correlates of protection to assist in the future deployment of vaccines. To address this, we modelled the relationship between in vitro neutralisation levels and observed protection from SARS-CoV-2 infection using data from seven current vaccines as well as convalescent cohorts. Here we show that neutralisation level is highly predictive of immune protection. The 50% protective neutralisation level was estimated to be approximately 20% of the average convalescent level (95% CI = 14-28%). The estimated neutralisation level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level (CI = 0.7-13%, p = 0.0004). Given the relationship between in vitro neutralization titer and protection, we then used this to investigate how waning immunity and antigenic variation might affect vaccine efficacy. We found that the decay of neutralising titre in vaccinated subjects over the first 3-4 months after vaccination was at least as rapid as the decay observed in convalescent subjects. Modelling the decay of neutralisation titre over the first 250 days after immunisation predicts a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralisation titres against some SARS-CoV-2 variants of concern are reduced compared to the vaccine strain and our model predicts the relationship between neutralisation and efficacy against viral variants. Our analyses provide an evidence-based prediction of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.


Sujets)
COVID-19
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

Résumé

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.288548

Résumé

SARS-CoV-2, the agent responsible for COVID-19 has been shown to infect a number of species. The role of domestic livestock and the risk associated for humans in close contact remains unknown for many production animals. Determination of the susceptibility of pigs to SARS-CoV-2 is critical towards a One Health approach to manage the potential risk of zoonotic transmission. Here, we show pigs are susceptible to SARS-CoV-2 following oronasal inoculation. Viral RNA was detected in group oral fluids and nasal wash from at least two animals while live virus was isolated from a pig. Further, antibodies could be detected in two animals at 11 and 13 days post infection, while oral fluid samples at 6 days post inoculation indicated the presence of secreted antibodies. These data highlight the need for additional livestock assessment to determine the potential role domestic animals may contribute towards the SARS-CoV-2 pandemic.


Sujets)
COVID-19 , Infections
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.291757

Résumé

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused substantially more infections, deaths, and economic disruptions than the 2002-2003 SARS-CoV. The key to understanding SARS-CoV-2's higher infectivity may lie in its host receptor recognition mechanism. This is because experiments show that the human ACE2 protein, which serves as the primary receptor for both CoVs, binds to CoV-2's spike protein 5-20 fold stronger than SARS-CoV's spike protein. The molecular basis for this difference in binding affinity, however, remains unexplained and, in fact, a comparison of X-ray structures leads to an opposite proposition. To gain insight, we use all-atom molecular dynamics simulations. Free energy calculations indicate that CoV-2's higher affinity is due primarily to differences in specific spike residues that are local to the spike-ACE2 interface, although there are allosteric effects in binding. Comparative analysis of equilibrium simulations reveals that while both CoV and CoV-2 spike-ACE2 complexes have similar interfacial topologies, CoV-2's spike protein engages in greater numbers, combinatorics and probabilities of hydrogen bonds and salt bridges with ACE2. We attribute CoV-2's higher affinity to these differences in polar contacts, and these findings also highlight the importance of thermal structural fluctuations in spike-ACE2 complexation. We anticipate that these findings will also inform the design of spike-ACE2 peptide blockers that, like in the cases of HIV and Influenza, can serve as antivirals.


Sujets)
Infections à coronavirus , Infections à VIH , Syndrome respiratoire aigu sévère
11.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

Résumé

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Sujets)
Maladies virales , Lymphome B , COVID-19
12.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.292078

Résumé

Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails--including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.

13.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.17.20104869

Résumé

The rapid global spread of SARS-CoV-2 and resultant mortality and social disruption have highlighted the need to better understand coronavirus immunity to expedite vaccine development efforts. Multiple candidate vaccines, designed to elicit protective neutralising antibodies targeting the viral spike glycoprotein, are rapidly advancing to clinical trial. However, the immunogenic properties of the spike protein in humans are unresolved. To address this, we undertook an in-depth characterisation of humoral and cellular immunity against SARS-CoV-2 spike in humans following mild to moderate SARS-CoV-2 infection. We find serological antibody responses against spike are routinely elicited by infection and correlate with plasma neutralising activity and capacity to block ACE2/RBD interaction. Expanded populations of spike-specific memory B cells and circulating T follicular helper cells (cTFH) were detected within convalescent donors, while responses to the receptor binding domain (RBD) constitute a minor fraction. Using regression analysis, we find high plasma neutralisation activity was associated with increased spike-specific antibody, but notably also with the relative distribution of spike-specific cTFH subsets. Thus both qualitative and quantitative features of B and T cell immunity to spike constitute informative biomarkers of the protective potential of novel SARS-CoV-2 vaccines.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche